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Abstract:  The basic purpose of a pump intake is to supply water with a uniform velocity at the entry of an impeller. The 

fluid flow in Pump intakes is rather complex involving expansions and turns together with fluid-structure interactions. The 

intake of pumps is usually designed analytically, based on standard designs, best practices and also previous implementation 

experience. These basic designs are often updated to accommodate varying pump flow rates or different site limitations. Such 

changes can affect approach flow characteristics and result in underperformance of pumps. Pumps are known to experience 

common operational problems such as decreased flow rate and head, power effects, and increased vibration and noise. Pumps 

can in extreme cases experience impeller corrosion due to cavitation and excessive wear of shafts, bearings, wear rings, and 

couplings. This results in a Lack of pump efficiency and reliability degradation, which leads to a significant increase in 

operating and maintenance costs. Such issues are related to certain undesirable characteristics of the approach flow and are 

caused primarily by poor design of the pump intake structure. Due to the high cost of the construction and operation of 

laboratory models and the limited measurements taken, the utilization of numerical modeling as an alternative tool for 

studying complex flow problems has become popular with the rapid development of Computational Fluid Dynamics (CFD) 

software. we can predict the flow parameters at the pump inlet with the change in geometry without actual running of the 

pump with CFD. Hence the design of the sump can be optimized to keep the flow parameters below limiting values. This 

study attempts to Study the Parameters Affect on Pump Intake Design and model the flow characteristic in a pump sump, 

minimize the swirl angles, increase the flow at the pump inlet and keep the flow parameters below limiting values. by us ing 

(CFD) code FLUENT. The numerical study carried out in this paper aims at optimizing the overall fluid flow in a pump 

intake by the use of a commercially available CFD code. CFD study was carried out on initial sump geometry and initial 

CFD results were analyzed.  
Keywords: CFD, Pump Intake, Vortexes, pumping station. 

1. INTRODUCTION 

Desmukh and Gahlot [1] studied the flow conditions at the entry to a pump depend Upon flow conditions in the location of 

pump intake concerning the walls, sump geometry, approach channel, velocity changes, and obstructions such as piers, screens, 

etc. , and rotational tendencies inflow produced upstream of the pump bays In his work, he has attempted to simulate and 

predict the flow conditions such as swirl and vortices for multiple pump intakes in a single sump to determine the viability of, 

commercially available computational fluid dynamic software – ANSYS CFX as an important design optimization tool for 

intake sumps. And they concluded that the commercial CFD package ANSYS CFX-10 was used to predict the three-

dimensional flow and vortices in a pump sump model. Ashraf Ghanem and Elzahry Farouk Elzahry [2] studied the hydraulic 

problems in the Faraskour pumping station. Initially, water could not reach the first and fifth units of the operation. The main 

hydraulic problem of the suction basin of the new pump station is the sharp rotation of the suction guide from the sharp rotation 

of the quay station, and that caused the continuous discontinuation of the first and fifth units due to the lack of regular water 

entering the unit. A numerical simulation was conducted to investigate the hydraulic stability of the station. Computational 

fluid dynamic (CFD) is used to simulate the flow conditions at different working pumping units to predict the hydraulic 

problem at the suction side. The results indicate that the geometry of the intake is proper for running five parallel flow pumps 

with the designed flow rate and use guide walls with a curvature length of 6 m and width of 0.5 m for each pump. Cecilia et al 

[3] aimed at verifying the ability of a commercial computational fluid dynamic (CFD) code to predict the formation of vortices 

in a pump sump. The intention was to identify intensity in a geometrically simple pump sump and vortices of diverse origin of 

which experimental results under the same operating conditions are known. Calculated velocities correlate well to Magnitudes 

and trends of measured ones, whereas the maximum values of vortices calculated are several orders of magnitude higher than 

those measured, which is explained by the characteristics of measurement in the physical model. They concluded that the 

Study the Parameters Affect on Pump Intake Design Using CFD. 
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results allow establishing some conclusions regarding the application of the FLOW-3D code for detecting vortices in a pump 

sump using the LES (Large Eddy Simulation) model. The latter has been suggested in the references instead of other turbulence 

models like the Reynolds Averaged Navier-Stokes (RANS) which does not represent realistically the highly unstable and 

intermittent phenomenon. The numerical results demonstrated the capability of the model identifying the observed vortices in 

the physical model. Franci et al [4] make computational fluid dynamics (CFD) calculation of pump sumps which troublesome 

due to the nature of the flow. Pump sump flow is unsteady and turbulent, and pump sump dimensions were large compared to 

the diameter of vortices occurring near the sump walls or in the pump column. Therefore, the computational grid should be 

fine enough in certain areas of the sump, to capture the general and important phenomena of the flow. An important role played 

by the decision for the suitable turbulent model, in adding or reducing the computational costs. The present work intends to 

get an answer whether the Unsteady Reynolds Averaged Navier-Stokes (URANS) model fails in predictions of vortex 

modeling since the usage of the Large Eddy Simulation (LES) model for industrial cases would represent huge computational 

power demands. In the second part of the paper, a real case pump sump is analyzed. Elzahry Farouk Elzahry and Ashraf 

Ghanem [5] studied the hydraulic problem in A New El-Tabiya pumping station in Alexandria Governorate. The station 

consists of six axial pumping units. The numerical study carried out in this paper aims at optimizing the overall fluid flow in 

a pump intake by the use of a commercially available CFD code. CFD study was carried out on initial sump geometry and 

initial CFD results were analyzed. The study of vortex formation in pump sump during intake for pumps with wet pit 

installation has been an ongoing effort by many researchers for the past decades. Although vortices may occur in dry pit 

installation as well, the effects are more detrimental for the wet pit installation due to the fact that the pump inlet is submerged 

in water and therefore the vortices can directly come in contact with the pump impeller and cause damages which will affect 

the pump performance [6]. This work will complement vortex-reduction effort in intake pipe which eventually affect impeller 

and pump performance [7]. There are guidelines proposed by organizations related to pump intake design such as ANSI [8], 

BSI [9] and JSME [10] which could help eliminate or at least control the formation of vortices in pump sump. These guidelines 

mainly focus on the geometry of the pump sump in the vicinity of the inlet where sharp edges or curvatures in the sump may 

alter the uniformity of the intake flow and thus create high vorticity regions which will be the source of vortex formation [11].  

2. PROBLEM STATEMENT   

Pump intakes are hydraulic structures used to withdraw water from a river or reservoir; poor intake design can result in 

submerged or surface vortices, flow swirls entering the pump, non-uniform velocity distribution at the pump impeller, and air 

or gas bubbles being drawn in. The flow at the impeller must restrict the degree to which these hydraulic conditions are present 

for pumps to achieve their maximum hydraulic efficiency in all operating conditions. Therefore, testing the pump intakes using 

an experimental model or a numerical model was necessary to predict the flow characteristics accurately. Due to the high cost 

of the construction and operation of laboratory models and the limited measurements taken, the utilization of numerical 

modeling as an alternative tool for studying complex flow problems has become popular with the rapid development of 

Computational Fluid Dynamics (CFD) software and studying the Parameters Affect on Pump Intake Design Using CFD such 

as discharge in the canal and water level. 

3. SIMULATION PROCEDURE 

Before the simulation can be made, many constraint factors have to be considered. The computer model setup is generated 

by the pre-processor. Then the type of meshing has been selected before the problem is solved. The boundary conditions have 

to be carefully set up because most of the input parameters are based on the boundary conditions. After the mesh generation is 

completed, the problem will be solved by a solver.  In solver, the quality of the mesh will be evaluated. If mesh quality is poor, 

then it has to be refining until it was successfully read by the solver. The solver formulation, turbulence model which 

compensates the fluctuating velocity terms and material properties, has to be decided for calculating the flow field of the body. 

After the boundary condition and the solution control parameter is specified, the problem is ready to be initialized. The 

initializing and iteration processes will stop when the calculations are accomplished. Then the results can be examined and 

analyzed. For the present study. 

4. NUMERICAL MODEL  

The numerical model for the case study is then built using ANSYS fluent 18.1 and the geometry is drawn using the design 

modeler, a suitable set up of the solution of the numerical model is set and the numerical results are extracted and compared 

to the recommendations of the standard ANSI 9.81/2012. To get an accurate simulation, the outlet volume flow is applied in 

these cases. The numerical analysis is a transient state. The “ideal wall” condition simulates the level of water, while the 

environment pressure condition is applied to simulate on the “inlet caps”. The quality of the computational mesh has an 

important role in achieving the desired accuracy of the simulations especially if the computational domain is very complex. 

The basic three-dimensional geometry is prepared using The ANSYS R18.1 software. The equations are supplemented by 
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fluid state equations defining the nature of the fluid, and by empirical dependencies of fluid density, viscosity, and thermal 

conductivity on temperature. To predict turbulent flows, the Favre-averaged Navier-Stokes equations are used, where time-

averaged effects of the flow turbulence on the flow parameters are considered, where the other, i.e. large-scale, time-dependent 

phenomena are taken into account directly.  Three-dimensional unstructured meshes are used for the flow simulation in the 

pump sump. The unstructured mesh is used for this study due to model complexity and easy to mesh especially at the intake 

section. The numerical solver uses unstructured meshes that allow flexibility in meshing very complex geometries while 

maintaining high-quality computational mesh which is necessary for obtaining accurate solutions. The solver requires some 

initial values for initializing the finite element analysis procedure. These initial values approximate the required conditions. 

The inlet boundary condition is applied at the entry in terms of total mass flow that is entering into the sump, using a high-

intensity turbulence model. This model is chosen to keep the frictional, turbulence errors in consideration. At the outlet face, 

an outflow is assumed averaging over the entire face. There is no slip in the wall and the surfaces of the sump are kept smooth 

to reduce friction losses as much as possible. 

4. MESH DESCRIPTION  

The meshing technique used is the tetrahedrons method with inflation to all solid walls of the channel and suction pipe. 

Furthermore, to enhance the solution accuracy and solution speed the tetrahedrons mesh was being converted to polyhedrons 

mesh as shown in figures (1) and (2). the number of mesh elements and computational nodes are within the range of 2928869 

and 1063169 respectively. 

 

 

Fig. (1) The boundary conditions setup. 

 

Fig. (2) Mesh distributed across a 3D view. 

5.  SOLUTION SETUP   

The boundary conditions of the solution technique are indicated on a 3D model in figure 1. the turbulence model used in the 

solution technique is RNG- K -ɛ model. This model was selected due to its good agreement between the numerical solution 

and the experimental work. the quality of the computational mesh has an important role in achieving the desired accuracy of 
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the simulations especially if the computational domain is very complex. The basic three-dimensional geometry is prepared 

using The ANSYS R18.1 software flow simulation software drawing with the grid surfaces plot of a sump. The equations are 

supplemented by fluid state equations defining the nature of the fluid, and by empirical dependencies of fluid density, viscosity, 

and thermal conductivity on temperature. To predict turbulent flows, the Favre-averaged Navier-Stokes equations are used, 

where time-averaged effects of the flow turbulence on the flow parameters are considered, where the other, i.e. large-scale, 

time-dependent phenomena are considered directly. Three-dimensional unstructured meshes are used for the flow simulation 

in the pump sump. The unstructured mesh is used for this study due to model complexity and easy to mesh especially at the 

intake section. The numerical solver uses unstructured meshes that allow flexibility in meshing very complex geometries while 

maintaining high-quality computational mesh which is necessary for obtaining accurate solutions. 

 

 

 

 

 

 

 

 

6.   SWIRL ANGEL 

One of the most important parameters that is also used to determine whether the pump intake is acceptable or not is the swirl 

angel.  Where the acceptance criteria for swirl angel as discussed previously is 5o [12]. 

A

t

V

V
1tan   

Where, 

Vt = Tangential velocity in suction pipe (m/s) 

VA = Axial velocity in suction pipe (m/s) 

7 . RESULTS AND DISCUSSIONS 

7.1. EFFECT OF DISCHARGE: 

  The canal capacity always changes throughout the year and the most important reason for this change is the winter intensity 

in January and the climate changes affecting the efficiency of pumps, Figures (1) through (9), developed directly from 

FLUENT under ANSYS 18.1 software output, illustrate the results of cases 1,2 and 3 of the model simulation which represents 

the effect of the discharge. In each of these figures, the magnitudes of velocity vectors (in m/s), streamline shape and its 

directions and velocity contour are indicated by the color scale and the length of each vector depends on the direction of the 

velocity. The velocity vector (m/s) contours had been shown in this section. These figures were included to illustrate the basic 

features of model output. 

 Water Level (m) Discharge (L/Sec) 

Case 1 0.3 30 

Case 2 0.3 15 

Case 3 0.3 10 

 7.1.1. VELOCITY VECTOR AT THE WATER LEVEL OF 0.3M WITH A FLOW RATE OF 30L/S (CASE 1) 

     Figure (1) show the plan views of intake at the surface (0.3m), 0.15m, and bottom (0m), respectively. This case was 

operated at a water level of 0.3m which is the surface of the contact with the air with a flow rate of 30L/s. The velocity vectors 

in Fig. (1) illustrated surface vortex at the upper level of the water (at an elevation of 0.3m). There are no separation zones and 

the dead zone disappears and there is regularity in the streamlines as well as the vortices clearly and there is no vortex. 
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(a) 

 

(b) 

 
(c) 

Fig. (1) velocity vectors with a flow rate of 30L/s (a) at the upper level of the water (0.3m) (b) at 0.15 m (c) at the 

bottom(0m). 

       Figure (2a) illustrates the contour of velocity magnitude along the pump axis. The result shows that the velocity 

distribution increase and no dead zone. Figure (2b) shows the velocity vectors along the pump axis indicate that the flow is 

regularity and dense, and there is no dead zone. 

          
                                 (a)                                                                                                  (b) 

Fig. (2) (a)Velocity contour (b) velocity vectors with a flow rate of 30L/s along the pump axis at water level 0.3m. 

       Figure (3) shows the Velocity contour, streamline velocity, and velocity vectors at the slop of the canal for case 1. The 

result shows that the velocity distribution increase and no dead zone and clear in the velocity vectors that the flow is 

regularity and dense, and there is no dead zone, and the streamline is a regularity. 
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fig. (3) velocity contour, streamline velocity, and velocity vectors at the slop of canal for case 1. 

 

     7.1.2. Velocity vector at the water level of 0.3m with a flow rate of 15L/s (case 2) 

      This section revealed the results of the velocity vector at water level 0.3m with a flow rate of 15L/s. This case was operated 

at a water level of 0.3m which is the surface of the contact with the air with a flow rate of 15L/s. The velocity vectors in Fig. 

(4) illustrated surface vortex at the upper level of the water (at an elevation of 0.3m). A closer review of this figure reveals that 

there is no vortex appeared at the back of the pump column but the separation zone appeared. The location of the separation 

zone of the flow is symmetrically located at the back of the intake pipe 1 and 2 respectively. The effect of the low capacity of 

water leads to irregularity in the streamlines and the dead zone began to appear. 

    

(a)                                                          (b) 

 

)C) 

Fig. (4) velocity vectors with a flow rate of 15L/s (a) at the upper level of the water (0.3m) (b) at 0.15 m (c) at the 

bottom(0m). 

     Figure (5a) illustrates the contour of velocity magnitude along the pump axis. The result shows that the velocity 

distribution decrease and the dead zone appeared compared to the previous case. Figure (5b) shows the velocity vectors along 

the pump axis indicate that the flow is an irregularity, and there is a separation zone compared to the previous case.  
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(a)                                                                                           (b) 

Fig. (5) (a)Velocity contour (b) velocity vector with a flow rate of 15L/s along the pump axis.  

       Figure (6) shows the Velocity contour, streamline velocity, and velocity vectors at the slop of the canal for case 2. The 

result shows that the velocity distribution decrease and the dead zone appear and clear in the velocity vectors that the flow is 

an irregularity and there is a separation zone, and the streamline is irregularity and divergence towards the sidewall compared 

to the previous case. 

 

 

Fig. (6) Velocity contour, streamline velocity, and velocity vectors at the slop of canal for case 2. 

7.1.3. VELOCITY VECTOR AT THE WATER LEVEL OF 0.3M WITH A FLOW RATE OF 10L/S (CASE 3) 

 

      This section revealed the results of the velocity vector at water level 0.3m with a flow rate of 10L/s. This case was 

operated at a water level of 0.3m which is the surface of the contact with the air with a flow rate of 10L/s. The velocity vectors 

in Fig. (7) illustrated surface vortex at the upper level of the water (at an elevation of 0.3m). this figure reveals that the 

separation zone appeared and increase at the around of the pump column. The location of the separation zone of the flow is 

symmetrically located at the back of the intake pipe 1 and 2 respectively. The effect of the low capacity of water leads to 

irregularity in the streamlines and the dead zone began to appear. 

                    
                                       (a)                                                                                          (b) 
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(c) 

Fig. (7) velocity vectors with a flow rate of 10L/s (a) at the upper level of the water (0.3m) (b) at 0.15 m (c) at the bottom (0 

m). 

       Figure (8a) illustrates the contour of velocity magnitude along the pump axis. The result shows that the dead zone 

increase around the suction pipe and the velocity of the flow decrease compared to the previous case. Figure (8b) shows the 

velocity vectors along the pump axis indicate that the flow is an irregularity, and there is a separation zone compared to the 

previous case.  

       
             (a)                                                                       (b) 

Fig. (8) (a)Velocity contour (b) velocity vector with a flow rate of 4L/s along the pump axis. 

Figure (9) shows the Velocity contour, streamline velocity, and velocity vectors at the slop of the canal for case 3. The result 

shows that the velocity distribution decrease and the dead zone appear and clear in the velocity vectors that the flow is an 

irregularity and there is a separation zone, and the streamline is irregularity and divergence towards the sidewall compared to 

the previous case. 

 

 

Fig. (9) Velocity contour, streamline velocity, and velocity vectors at the slop of canal for case 3. 

From the above results the increasing discharge in the canal leads to increase water velocity and there is no dead zone in the 

sump pump in the same section when the water level is constant. 

     7.2. EFFECT OF WATER LEVEL IN THE CANAL: 

     The water level is low due to depositions that occur at the pump intake, Figures (10) through (19), developed directly from 

FLUENT under ANSYS 18.1 software output, illustrate the results of cases 4,5 and 6 of the model simulation which represents 

the effect of the deposition in the canal. In each of these figures, the magnitudes of velocity vectors (in m/s), streamline shape 

and its directions and velocity contour are indicated by the color scale and the length of each vector depends on the direction 
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of the velocity. The velocity vector (m/s) contours had been shown in this section. These figures were included to illustrate the 

basic features of model output. 

 Water Level (m) Discharge (L/Sec) 

Case 4 0.18 30 

Case 5 0.12 30 

Case 6 0.06 30 

     7.2.1. VELOCITY VECTOR AT THE WATER LEVEL OF 0.18M WITH A FLOW RATE OF 30L/S (CASE 4) 

     Figure (10) show the plan views of intake at the surface (0.18m), 0.09m, and bottom (0m), respectively. This case was 

operated at a water level of 0.182m which is the surface of the contact with the air with a flow rate of 30L/s. The velocity 

vectors in Fig. (10) illustrated surface vortex at the upper level of the water (at an elevation of 0.18m). There are no separation 

zones and the dead zone disappears and there is regularity in the streamlines as well as the vortices clearly and there is no 

vortex. 

   
                                           (a)                                                                           (b) 

 
(c) 

Fig. (10) velocity vectors with a flow rate of 30L/s (a) at the upper level of the water (0.182m) (b) at 0.09 m (c) at the 

bottom(0m). 

       Figure (11a) illustrates the contour of velocity magnitude along the pump axis. The result shows that the velocity 

distribution increase and the no dead zone. Figure (11b) shows the velocity vectors along the pump axis indicate that the flow 

is regularity and dense, and there is no dead zone. 

          
                                         (a)  (b) 

Fig. (11) (a)Velocity contour (b) velocity vectors with a flow rate of 30L/s along the pump axis at water level 0.18m. 

       Figure (12) shows the Velocity contour, streamline velocity, and velocity vectors at the slop of the canal for case 4. The 

result shows that the velocity distribution increase and the no dead zone and clear in the velocity vectors that the flow is 

regularity and dense, and there is no dead zone and the streamline is a regularity. 
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Fig. (12) Velocity contour, streamline velocity, and velocity vectors at the slop of canal for case 1. 

 7.2. 2. VELOCITY VECTOR AT THE WATER LEVEL OF 0.12M WITH A FLOW RATE OF 30L/S (CASE 5) 

      This section revealed the results of the velocity vector at water level 0.12m with a flow rate of 30L/s.  This case was 

operated at a water level of 0.12m which is the surface of the contact with the air with a flow rate of 30L/s. The velocity vectors 

in Fig. (13) illustrated surface vortex at the upper level of the water (at an elevation of 0.12m). A closer review of this figure 

reveals that one counter-rotating vortex appeared at the back of the pump column. The location of the vortex is symmetrically 

located at the back of the intake pipe 1 and 2 respectively and there are separate zones of the flow. The occurrence of the 

surface vortex also appeared at similar locations, which shows the velocity vector at the elevation of 0.06m. As expected, the 

vortices at this elevation (0.06m) of the pump sump intake are slightly smaller than those shown at the surface The effect of 

the low water level leads to irregularity in the streamlines, and the dead zone began to appear as well as the vortices clearly 

compared to previous cases.  

 

(a) 

 

(b) 

 

(c) 

Fig. (13) velocity vectors with a flow rate of 30L/s (a) at the upper level of the water (0.12m) (b) at 0.06 m (c) at the 

bottom(0m). 

       Figure (14a) illustrates the contour of velocity magnitude along the pump axis. The result shows that the velocity 

distribution decrease and the dead zone appeared compared to the previous case. Figure (14b) shows the velocity vectors along 

the pump axis indicate that the flow is an irregularity, and there is a separation zone compared to the previous case.  
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                                    (a)                                                                                        (b)  

Fig. (14) (a)Velocity contour (b) velocity vectors with a flow rate of 30L/s along the pump axis at water level 0.12m. 

       Figure (15) shows the Velocity contour, streamline velocity, and velocity vectors at the slop of the canal for case 5. The 

result shows that the velocity distribution decrease and the dead zone appear and clear in the velocity vectors that the flow is 

an irregularity and there is a separation zone, and the streamline is irregularity and divergence towards the sidewall compared 

to the previous case.  

 

 

Fig. (15) Velocity contour, streamline velocity, and velocity vectors at the slop of canal for case 5. 

7.2. 3. VELOCITY VECTOR AT THE WATER LEVEL OF 0.06M WITH A FLOW RATE OF 30L/S (CASE 6). 

Figure (16) illustrates the contour, vector, and streamline of velocity magnitude at the upper level of the water (0.06m). There 

are separation zones and the dead zone appears and there is an irregularity in velocity vectors as well as the vortices clearly 

compared to previous cases. One rotating surface vortex type 4 to 5 behind the column intake, one subsurface vortex type2 

directly under the intake column, and one wall attach vortex respectively at the back and side wall (inner and outer). 

 
(a) 

 
(b) 
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(c) 

Fig. (16) velocity vectors with a flow rate of 30L/s (a) at the upper level of the water (0.06m) (b) at 0.03 m (c) at the bottom 

(0 m). 

       Figure (17a) illustrates the contour of velocity magnitude along the pump axis. The result shows that the velocity 

distribution decrease and the appearance of the dead zone clearly in the slop of the canal compared to the previous case. Figure 

(17b) shows the velocity vectors along the pump axis indicate that the flow is an irregularity, an and Increase in the appearance 

of the separation zone behind the column of the suction pipe compared to the previous case.  

 

(a) 

 

(b) 

Fig. (17) (a)Velocity contour (b) velocity vectors with a flow rate of 30L/s along the pump axis at water level 0.06m. 

       Figure (18) shows the Velocity contour, streamline velocity, and velocity vectors at the slop of the canal for case 6. The 

result shows that the velocity distribution decrease and the dead zone appear and clear in the velocity vectors that the flow is 

an irregularity and there is a separation zone, and the streamline is irregularity and divergence towards the sidewall compared 

to the previous case. 

 

 

Fig. (18) Velocity contour, streamline velocity, and velocity vectors at the slop of canal for case 21. 
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     From above results The increasing water level in the pump sump leads to increase water velocity and there is no dead zone 

in the same section when discharge is constant. 

7.3. EFFECT HEIGHT OF PUMP SUMP: 

     Three cases are studied to know the effect of sump height on the flow of water, Figures (19) through (24), illustrate the 

results of cases 7, 8 and 9 of the model simulation which represents the effect of the height. In each of these figures, the 

magnitudes of velocity vectors (in m/s), streamline shape and its directions and velocity contour are indicated by the color 

scale and the length of each vector depends on the direction of the velocity. The velocity vector (m/s) contours had been shown 

in this section. These figures were included to illustrate the basic features of model output. 

 Length (m) Discharge (L/Sec) 

Case 7 0.3 30 

Case 8 0.24 30 

Case 9 0.18 30 

     Figure (19) shows the velocity vectors along the pump axis indicate that the flow is an irregularity, and there is a separation 

zone when the height increases, in case no 7 the slop had a bad effect on the flow, velocity decreases and there is a dead zone. 

 
(a)                                                                                        (b) 

 
(c) 

Fig. (19) velocity vectors along the pump axis (a) case 7 (b) case8 (c) case9. 

     Figure (20) shows the velocity contour along the pump axis indicates that the velocity of flow increases when the height of 

the sump decreases, and there is no separation zone, in case no 1 the slop had a pad effect on the velocity of flow.  

 
(a)                                                            (b)  

 
(c) 
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Fig. (21) velocity contour along the pump axis (a) case 7 (b) case8 (c) case9. 

     Figure (22) shows the velocity vectors along the suction pipe indicate that the flow is an irregularity, and there is a 

separation zone when the height increases, in case no 7 the slop had pad effect on the flow, velocity decreases and there is a 

dead zone. 

 
(a)                                                                (b) 

 
(c) 

Fig. (22) velocity vectors along the suction pipe (a) case 7 (b) case8 (c) case9. 

     The velocity contour along the pump axis shown in Figure (23) indicates that the velocity of flow increases when the height 

of the sump decreases, and there is no dead zone.  

 
(a)                                                             (b) 

 
(c) 

Fig. (23) velocity contour along the suction pipe (a) case 7 (b) case8 (c) case9. 

     Velocity Vectors magnitude at the bottom level of the sump (0m) show in Figure (24). There are separation zones and the 

dead zone appears and there is an irregularity in velocity vectors as well as the vortices clearly when the sump height increase. 

 

(a)                                                           (b) 
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(c) 

Fig. (24) velocity vectors at the bottom (0 m) (a) case 1 (b) case8 (c) case9.  

     The velocity contour at the upper level of water (0.3 m) shown in Figure (25) indicates that the velocity of flow increase 

when the height of the sump decreases, and there is no dead zone.  

 
(a)                                                                                             (b) 

 
(c) 

Fig. (25) velocity contour at the upper level of water (0.3 m) (a) case 7 (b) case8 (c) case9.  

Velocity Vectors magnitude at the slop of the canal shown in Figure (26). There are separation zones and the dead zone appears 

and there is an irregularity in velocity vectors as well as the vortices clearly when the sump height increase. 

 
(a)                                                                                      (b) 

 
(c) 

Fig. (26) velocity vectors at the slop of canal (a) case 1 (b) case8 (c) case9.  

7.4. Swirl Angle Measurements 
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     The swirl angle measurement results will be discussed in this section. There were nine cases conducted in this study, 

similar to the previous sections.  Each of these cases was observed at different water levels and different flow rates. Table (1) 

show the results of swirl angle of the study. For cases 1,2 and 3 it was observed that a swirl angle of 4.6°, 3.3°, 2.4° respectively. 

The results indicated that these are not as critical as explained in Table (1). Furthermore, for cases 4, 5, and 6 the flow rates 

constant at 30L/S with different water level remained. The swirl angles of 9.1°, 11.7°, and 14.2 respectively. 

Table (1) Result of swirl and swirl angle of the study 

Case of 

study 

Water 

level (m) 

Flow rate, Q 

(L/s) 

Swirl angle 

(°) 

1 0.3 30 4.6 

2 0.3 15 3.3 

3 0.3 10 2.4 

4 0.18 30 9.1 

5 0.122 30 11.7 

6 0.062 30 14.2 

7 0.3 30 4.6 

8 0.24 30 7.4 

9 0.18 30 9.1 

     Another group of cases was observed at a maximum flow rate of 30L/s. It was observed that for case 9, the maximum swirl 

angle was 9.1°. 
     For the case 8 and 9, the observed swirl and swirl angles were 54 rev/min and 20 rev/min at 11.7° and 4.4° respectively. 

From the literature, the adequate typical design required the swirl angle (θ) to be less than 5° [12]. For this situation, cases 1, 

2, 3, 6, and 9 produced acceptable values; however, for cases of 4, 5, 7, and 8 observed values did not pass the acceptable value 

see table (1). The swirl and swirl angle also depend on the water level and flow rate. At the lowest water level (0.18m) with 

the highest flow rate of 30L/s, the number of swirls and swirl angle was highest noted as 66rev/min and 14.2°. Compared to 

case 1, at the highest water level, 0.3m and lowest flow rate 10L/s the number of swirls and swirl angles is the smallest, in the 

range of acceptable value.  

9. CONCLUSION 

    In the computational study, the grid sensitivities and flow visualization have been carried out. The number of the grid 

element in the model gives effect to the number of iteration process and time to converge. The model that consists of a finer 

grid has a big number of iteration and took a long time to converge. In the velocity contour visualization, the suction intake 

(near the entrance of the intake column) has the highest velocity mainly occurred. Different approaches were simulated using 

CFD to find the optimum and reliable modification method for the pumping station.  The CFD analysis yields a complete 

three-dimensional picture of the velocity contours inside the sump intake. Established as a simulation model, it is proven to 

be very effective in predicting velocity magnitude (m/s). 

In all cases with a water level of 0.3m, even with maximum flow rate (30L/s); there is no occurrence of a vortex during 

the testing. In other cases, when the water level is low (0.18m) and the maximum flow rate (30L/s), the characteristics of the 

water flow inside the sump intake show the occurrences of vortices either surface and subsurface. As the water level at the 

pump sump decreases more vortices spreading in the flow and this allows air entering the suction pipe.  As a result, the 

compressibility of flow and its density decreases and this needs more power for compressing. the increasing discharge in the 

canal leads to increase water velocity and there is no dead zone in the sump pump in the same section when the water level 

is constant and The increasing water level in the pump sump leads to increase water velocity and there is no dead zone in the 

same section when discharge is constant. 

Calculations made indicated that the swirl angles of cases 4, 5, 6,8, and 9 were more than 5°. However, it has been confirmed 

by previous researcher results, that these are not acceptable values. Case 6 is the worst condition of water flow characteristics 

in this study. In this case, the occurrence of vortices is caused by submergence (minimum water level of 0.062m) and flow rate 

(maximum flow rate of 30L/s). 
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